Search results for "Homologous recombination"

showing 10 items of 39 documents

In the literature: October 2016

2016

A consortium on clinical and molecular stratification on oesophageal adenocarcinoma established in Britain has recently published in Nature Genetics , a whole-genomic sequencing analysis of more than 100 samples.1 Interestingly, they describe three distinct molecular subtypes with potential treatment relevance. This observation has also been verified in an independent validation cohort. Those three types are: (1) the ones showing homologous recombination and chromosome segregation pathways defects with enrichment of a BRCA signature. These tumours would be sensitive to DNA damaging agents, including neutron and photon irradiation with the addition of PARP inhibitors, (2) a group with high m…

GeneticsCancer ResearchChemotherapyMutationbiologymedicine.medical_treatmentliteratureImmunotherapyNewsmedicine.disease_causeGenomeOncologyGene duplicationmedicineCancer researchbiology.protein1506AntibodyHomologous recombinationCD8ESMO Open
researchProduct

The sf32 unique gene of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a non-essential gene that could be involved in nucleocapsid o…

2013

A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration)…

GenotypevirusesScienceGenome ViralSpodopteraSpodopteraVirus ReplicationOcclusion-derived virionsRecombinant virusHomology (biology)VirusViral Proteins03 medical and health sciencesAnimalsNucleocapsidSpodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV)Gene030304 developmental biology0303 health sciencesGenes Essential[SDV.BA.MVSA]Life Sciences [q-bio]/Animal biology/Veterinary medicine and animal HealthMultidisciplinaryNucleocapsid organizationbiology030306 microbiologyfungiQVirionRbiology.organism_classificationVirologyNucleopolyhedroviruses3. Good healthViral replicationEssential geneLarvaDNA Viral[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/VirologyMedicinesf32Homologous recombinationResearch ArticlePLoS ONE
researchProduct

In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: Evidence for the selective loss of a 47kb region on th…

2011

International audience; The adaptation of microorganisms to pesticide biodegradation relies on the recruitment of catabolic genes by horizontal gene transfer and homologous recombination mediated by insertion sequences (IS). This environment-friendly function is maintained in the degrading population but it has a cost which could diminish its fitness. The loss of genes in the course of evolution being a major mechanism of ecological specialization, we mimicked evolution in vitro by sub-culturing the atrazine-degrading Pseudomonas sp. ADP in a liquid medium containing cyanuric acid as the sole source of nitrogen. After 120 generations, a new population evolved, which replaced the original on…

genetics and hereditypseudomonas sp adp[SDV]Life Sciences [q-bio]PopulationAdaptation BiologicaladaptationBiology03 medical and health sciencesPlasmidMolecular evolutionPseudomonasGene duplicationGeneticsDirect repeatexperimental evolutionSelection GeneticInsertion sequenceHomologous RecombinationeducationGeneComputingMilieux_MISCELLANEOUS030304 developmental biology2. Zero hungerGenetics0303 health scienceseducation.field_of_studygenetic plasticitymolecular evolutionHerbicidesTriazines030306 microbiologycyanuric acidGeneral MedicineBiological EvolutionGenes Bacterial[SDE]Environmental SciencesAtrazineHomologous recombinationGene Deletion
researchProduct

Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O6-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by …

2008

Abstract O 6 -methylguanine (O 6 MeG) is a highly critical DNA adduct induced by methylating carcinogens and anticancer drugs such as temozolomide, streptozotocine, procarbazine and dacarbazine. Induction of cell death by O 6 MeG lesions requires mismatch repair (MMR) and cell proliferation and is thought to be dependent on the formation of DNA double-strand breaks (DSBs) or, according to an alternative hypothesis, direct signaling by the MMR complex. Given a role for DSBs in this process, either homologous recombination (HR) or non-homologous end joining (NHEJ) or both might protect against O 6 MeG. Here, we compared the response of cells mutated in HR and NHEJ proteins to temozolomide and…

Programmed cell deathGuanineKu80DNA RepairDown-RegulationFluorescent Antibody TechniqueApoptosisCHO CellsBiologyTransfectionBiochemistryMiceO(6)-Methylguanine-DNA MethyltransferaseCricetulusCricetinaeDNA adductTemozolomideAnimalsDNA Breaks Double-StrandedMolecular BiologyBRCA2 ProteinChromosome AberrationsRecombination GeneticCell DeathCell growthCell BiologyTransfectionCell cycleMolecular biologyDNA-Binding ProteinsDacarbazineApoptosisMutationCancer researchHomologous recombinationSister Chromatid ExchangeDNA Repair
researchProduct

Deinococcus radiodurans' SRA-HNH domain containing protein Shp (Dr1533) is involved in faithful genome inheritance maintenance following DNA damage

2018

WOS:000452343100012; International audience; Background: Deinococcus radiodurans R1 (DR) survives conditions of extreme desiccation, irradiation and exposure to genotoxic chemicals, due to efficient DNA breaks repair, also through Mn2+ protection of DNA repair enzymes. Methods: Possible annotated domains of the DR1533 locus protein (Shp) were searched by bioinformatic analysis. The gene was cloned and expressed as fusion protein. Band-shift assays of Shp or the SRA and HNH domains were performed on oligonucleotides, genomic DNA from E. coif and DR. slip knock-out mutant was generated by homologous recombination with a kanamycin resistance cassette. Results: DR1533 contains an N-terminal SRA…

DNA RepairDNA cytosine-methylation; DNA damage; DR1533 locus; Genotoxic agents; Mn2+; SRA domain; Biophysics; Biochemistry; Molecular BiologyGenotoxic agents[SDV]Life Sciences [q-bio]DNA cytosine-methylationperspectiveSettore BIO/19 - Microbiologia GeneraleBiochemistrychemistry.chemical_compound0302 clinical medicineKanamycinCloning Molecularcytosine0303 health sciencesDR1533 locusbiologyChemistryGenotoxic agentuhrf1Mn(2+)Mn2+SRA domainDeinococcusrecognitionmanganese(ii)DNA BacterialDNA damageDNA repairoxidationUbiquitin-Protein LigasesBiophysicsSettore BIO/11 - Biologia Molecolareresistance03 medical and health sciencesBacterial ProteinsProtein DomainsDR1533 locuDrug Resistance BacterialEscherichia coliHumansfeaturesAmino Acid SequenceGeneMolecular Biology030304 developmental biologyOligonucleotideComputational BiologyDeinococcus radioduransDNA Methylationbiology.organism_classificationMolecular biologygenomic DNArepairMutationCCAAT-Enhancer-Binding ProteinsDNA damageHomologous recombination030217 neurology & neurosurgeryDNAGenome BacterialMutagens
researchProduct

Genetic rearrangement of the atzAB atrazine-degrading gene cassette from pADP1::Tn5 to the chromosome of Variovorax sp. MD1 and MD2

2007

International audience; We report the characterization of the rearrangement phenomena responsible for the movement of the atrazine-degrading atzA and B genes from pADP1::Tn5 to the chromosome of Variovorax sp. MD1 and MD2. Long PCRs and Southern blot analyses revealed that the two genes forming a gene cassette moved in a unique rearrangement event. It also revealed that the boundaries of the plasmid sequence inserted in the chromosome correspond to IS1071or to sequences close to IS1071. It suggests that this genetic rearrangement could result from the transposition of the composite transposon delimited by IS1071 insertion sequences and containing atzA and atzB genes. In addition, for MD1 an…

HydrolasesATRAZINEMolecular Sequence DataTransposasesBiologyTranslocation GeneticHOMOLOGOUS RECOMBINATION03 medical and health sciencesPlasmidSequence Homology Nucleic AcidGeneticsInsertion sequenceGeneTransposase030304 developmental biologySouthern blotGenetics0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsBase Sequence030306 microbiologyGeneral MedicineChromosomes BacterialMolecular biologyGene cassetteComposite transposonAgrobacterium tumefaciensGenes BacterialATZ GENEINSERTION SEQUENCETRANSPOSITIONTransformation BacterialHomologous recombinationVARIOVORAX SPECIES
researchProduct

2020

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance inS.cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a disti…

0303 health sciencesCancer ResearchSaccharomyces cerevisiaeRAD51Biologybiology.organism_classificationSubtelomereCell biologyTelomereChromatinChromosome conformation capture03 medical and health sciences0302 clinical medicineTelomere HomeostasisGeneticsHomologous recombinationMolecular Biology030217 neurology & neurosurgeryGenetics (clinical)Ecology Evolution Behavior and Systematics030304 developmental biologyPLOS Genetics
researchProduct

Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

2013

Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly,…

Genome instabilityDNA RepairArticle SubjectDNA repairDNA damageSettore MED/06 - Oncologia MedicaDown-Regulationlcsh:MedicineBreast NeoplasmsBiologyGeneral Biochemistry Genetics and Molecular BiologyGenomic InstabilityBreast cancerCell Line TumorBreast CancermedicineHumansEnzyme Inhibitorsskin and connective tissue diseasesHypoxiaBiologyGeneral Immunology and MicrobiologyBRCA1 ProteinGenome Humanlcsh:RGenome StabilityGeneral MedicineDNA repair protein XRCC4medicine.diseaseBRCA2Cell HypoxiaAmino Acids DicarboxylicGene Expression Regulation NeoplasticCancer researchDNA mismatch repairFemaleHuman medicineHypoxia; Genome Stability; BRCA2; Breast CancerHomologous recombinationEngineering sciences. TechnologyNucleotide excision repairResearch ArticleDNA Damage
researchProduct

Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation

2000

Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 x 10(-5) to 3 x 10(-5) per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker an…

Mitotic crossoverSaccharomyces cerevisiaeMitosisGenetics and Molecular BiologyWineSaccharomyces cerevisiaeApplied Microbiology and BiotechnologyGenetic recombinationFungal ProteinsMeiosisFermentacióDNA FungalMitosisGeneticsFermentation in winemakingRecombination GeneticEcologybiologyHomozygotefood and beveragesvinificationSpores Fungalbiology.organism_classificationElectrophoresis Gel Pulsed-FieldYeast in winemakingMeiosiswine fermentationKaryotypingFermentationMitotic recombinationChromosomes FungalHomologous recombinationFood ScienceBiotechnology
researchProduct

A binary genetic approach to characterize TRPM5 cells in mice

2015

International audience; Transient receptor potential channel subfamily M member 5 (TRPM5) is an important downstream signaling component in a subset of taste receptor cells making it a potential target for taste modulation. Interestingly, TRPM5 has been detected in extra-oral tissues; however, the function of extra-gustatory TRPM5-expressing cells is less well understood. To facilitate visualization and manipulation of TRPM5-expressing cells in mice, we generated a Cre knock-in TRPM5 allele by homologous recombination. We then used the novel TRPM5-IRES-Cre mouse strain to report TRPM5 expression by activating a tau GFP transgene. To confirm faithful coexpression of tau GFP and TRPM5 we gene…

MalePhysiologytaste papillaegene targetingBehavioral NeuroscienceMice0302 clinical medicineTaste receptor[SDV.IDA]Life Sciences [q-bio]/Food engineeringGene Knock-In TechniquesIn Situ Hybridization Fluorescence0303 health sciencestaste budsiresGene targetingrosa26ImmunohistochemistrySensory SystemsCell biologyknock inmedicine.anatomical_structuretrpm5taste receptor cellsFemaleGenotypeTransgeneCre recombinaseTRPM Cation ChannelsMice TransgenicBiologyAntibodiestgfpseptal organ of masera03 medical and health sciencesOlfactory MucosaTonguemicrovillar cellsPhysiology (medical)Gene knockinmedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringTRPM5cre recombinaseAlleles030304 developmental biologyPalateMice Inbred C57BLvomeronasal organolfactory epitheliumgastrointestinal tractHomologous recombinationOlfactory epithelium030217 neurology & neurosurgery
researchProduct